Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Performance Analysis of Spatial and Transform Filters for Efficient Image Noise Reduction (1909.06507v1)

Published 14 Sep 2019 in eess.IV and cs.LG

Abstract: During the acquisition of an image from its source, noise always becomes an integral part of it. Various algorithms have been used in past to denoise the images. Image denoising still has scope for improvement. Visual information transmitted in the form of digital images has become a considerable method of communication in the modern age, but the image obtained after the transmission is often corrupted due to noise. In this paper, we review the existing denoising algorithms such as filtering approach and wavelets based approach and then perform their comparative study with bilateral filters. We use different noise models to describe additive and multiplicative noise in an image. Based on the samples of degraded pixel neighbourhoods as inputs, the output of an efficient filtering approach has shown a better image denoising performance. This yields promising qualitative and quantitative results of the degraded noisy images in terms of Peak Signal to Noise Ratio, Mean Square Error and Universal Quality Identifier.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.