Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 169 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Spatio-spectral networks for color-texture analysis (1909.06446v1)

Published 13 Sep 2019 in cs.CV, cs.LG, and physics.data-an

Abstract: Texture is one of the most-studied visual attribute for image characterization since the 1960s. However, most hand-crafted descriptors are monochromatic, focusing on the gray scale images and discarding the color information. In this context, this work focus on a new method for color texture analysis considering all color channels in a more intrinsic approach. Our proposal consists of modeling color images as directed complex networks that we named Spatio-Spectral Network (SSN). Its topology includes within-channel edges that cover spatial patterns throughout individual image color channels, while between-channel edges tackle spectral properties of channel pairs in an opponent fashion. Image descriptors are obtained through a concise topological characterization of the modeled network in a multiscale approach with radially symmetric neighborhoods. Experiments with four datasets cover several aspects of color-texture analysis, and results demonstrate that SSN overcomes all the compared literature methods, including known deep convolutional networks, and also has the most stable performance between datasets, achieving $98.5(\pm1.1)$ of average accuracy against $97.1(\pm1.3)$ of MCND and $96.8(\pm3.2)$ of AlexNet. Additionally, an experiment verifies the performance of the methods under different color spaces, where results show that SSN also has higher performance and robustness.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.