Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Recurrent Connectivity Aids Recognition of Partly Occluded Objects (1909.06175v1)

Published 12 Sep 2019 in cs.CV and cs.LG

Abstract: Feedforward convolutional neural networks are the prevalent model of core object recognition. For challenging conditions, such as occlusion, neuroscientists believe that the recurrent connectivity in the visual cortex aids object recognition. In this work we investigate if and how artificial neural networks can also benefit from recurrent connectivity. For this we systematically compare architectures comprised of bottom-up (B), lateral (L) and top-down (T) connections. To evaluate performance, we introduce two novel stereoscopic occluded object datasets, which bridge the gap from classifying digits to recognizing 3D objects. The task consists of recognizing one target object occluded by multiple occluder objects. We find that recurrent models perform significantly better than their feedforward counterparts, which were matched in parametric complexity. We show that for challenging stimuli, the recurrent feedback is able to correctly revise the initial feedforward guess of the network. Overall, our results suggest that both artificial and biological neural networks can exploit recurrence for improved object recognition.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.