Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sams-Net: A Sliced Attention-based Neural Network for Music Source Separation (1909.05746v4)

Published 12 Sep 2019 in eess.AS, cs.IR, cs.LG, and cs.SD

Abstract: Convolutional Neural Network (CNN) or Long short-term memory (LSTM) based models with the input of spectrogram or waveforms are commonly used for deep learning based audio source separation. In this paper, we propose a Sliced Attention-based neural network (Sams-Net) in the spectrogram domain for the music source separation task. It enables spectral feature interactions with multi-head attention mechanism, achieves easier parallel computing and has a larger receptive field compared with LSTMs and CNNs respectively. Experimental results on the MUSDB18 dataset show that the proposed method, with fewer parameters, outperforms most of the state-of-the-art DNN-based methods.

Summary

We haven't generated a summary for this paper yet.