Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Modular Meta-Learning with Shrinkage (1909.05557v4)

Published 12 Sep 2019 in cs.LG, cs.AI, and stat.ML

Abstract: Many real-world problems, including multi-speaker text-to-speech synthesis, can greatly benefit from the ability to meta-learn large models with only a few task-specific components. Updating only these task-specific modules then allows the model to be adapted to low-data tasks for as many steps as necessary without risking overfitting. Unfortunately, existing meta-learning methods either do not scale to long adaptation or else rely on handcrafted task-specific architectures. Here, we propose a meta-learning approach that obviates the need for this often sub-optimal hand-selection. In particular, we develop general techniques based on Bayesian shrinkage to automatically discover and learn both task-specific and general reusable modules. Empirically, we demonstrate that our method discovers a small set of meaningful task-specific modules and outperforms existing meta-learning approaches in domains like few-shot text-to-speech that have little task data and long adaptation horizons. We also show that existing meta-learning methods including MAML, iMAML, and Reptile emerge as special cases of our method.

Citations (36)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.