Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 44 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Nonstationary Nonparametric Online Learning: Balancing Dynamic Regret and Model Parsimony (1909.05442v1)

Published 12 Sep 2019 in math.OC, cs.LG, and eess.SP

Abstract: An open challenge in supervised learning is \emph{conceptual drift}: a data point begins as classified according to one label, but over time the notion of that label changes. Beyond linear autoregressive models, transfer and meta learning address drift, but require data that is representative of disparate domains at the outset of training. To relax this requirement, we propose a memory-efficient \emph{online} universal function approximator based on compressed kernel methods. Our approach hinges upon viewing non-stationary learning as online convex optimization with dynamic comparators, for which performance is quantified by dynamic regret. Prior works control dynamic regret growth only for linear models. In contrast, we hypothesize actions belong to reproducing kernel Hilbert spaces (RKHS). We propose a functional variant of online gradient descent (OGD) operating in tandem with greedy subspace projections. Projections are necessary to surmount the fact that RKHS functions have complexity proportional to time. For this scheme, we establish sublinear dynamic regret growth in terms of both loss variation and functional path length, and that the memory of the function sequence remains moderate. Experiments demonstrate the usefulness of the proposed technique for online nonlinear regression and classification problems with non-stationary data.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.