Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 177 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

A comparison of some conformal quantile regression methods (1909.05433v1)

Published 12 Sep 2019 in stat.ME, math.ST, stat.ML, and stat.TH

Abstract: We compare two recently proposed methods that combine ideas from conformal inference and quantile regression to produce locally adaptive and marginally valid prediction intervals under sample exchangeability (Romano et al., 2019; Kivaranovic et al., 2019). First, we prove that these two approaches are asymptotically efficient in large samples, under some additional assumptions. Then we compare them empirically on simulated and real data. Our results demonstrate that the method in Romano et al. (2019) typically yields tighter prediction intervals in finite samples. Finally, we discuss how to tune these procedures by fixing the relative proportions of observations used for training and conformalization.

Citations (100)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.