Papers
Topics
Authors
Recent
2000 character limit reached

Out-of-Domain Detection for Low-Resource Text Classification Tasks (1909.05357v1)

Published 31 Aug 2019 in cs.CL, cs.LG, and stat.ML

Abstract: Out-of-domain (OOD) detection for low-resource text classification is a realistic but understudied task. The goal is to detect the OOD cases with limited in-domain (ID) training data, since we observe that training data is often insufficient in machine learning applications. In this work, we propose an OOD-resistant Prototypical Network to tackle this zero-shot OOD detection and few-shot ID classification task. Evaluation on real-world datasets show that the proposed solution outperforms state-of-the-art methods in zero-shot OOD detection task, while maintaining a competitive performance on ID classification task.

Citations (55)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.