Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Frustratingly Easy Natural Question Answering (1909.05286v1)

Published 11 Sep 2019 in cs.CL

Abstract: Existing literature on Question Answering (QA) mostly focuses on algorithmic novelty, data augmentation, or increasingly large pre-trained LLMs like XLNet and RoBERTa. Additionally, a lot of systems on the QA leaderboards do not have associated research documentation in order to successfully replicate their experiments. In this paper, we outline these algorithmic components such as Attention-over-Attention, coupled with data augmentation and ensembling strategies that have shown to yield state-of-the-art results on benchmark datasets like SQuAD, even achieving super-human performance. Contrary to these prior results, when we evaluate on the recently proposed Natural Questions benchmark dataset, we find that an incredibly simple approach of transfer learning from BERT outperforms the previous state-of-the-art system trained on 4 million more examples than ours by 1.9 F1 points. Adding ensembling strategies further improves that number by 2.3 F1 points.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.