Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 229 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Validating Weak-form Market Efficiency in United States Stock Markets with Trend Deterministic Price Data and Machine Learning (1909.05151v1)

Published 11 Sep 2019 in q-fin.ST, cs.CE, cs.LG, and econ.EM

Abstract: The Efficient Market Hypothesis has been a staple of economics research for decades. In particular, weak-form market efficiency -- the notion that past prices cannot predict future performance -- is strongly supported by econometric evidence. In contrast, machine learning algorithms implemented to predict stock price have been touted, to varying degrees, as successful. Moreover, some data scientists boast the ability to garner above-market returns using price data alone. This study endeavors to connect existing econometric research on weak-form efficient markets with data science innovations in algorithmic trading. First, a traditional exploration of stationarity in stock index prices over the past decade is conducted with Augmented Dickey-Fuller and Variance Ratio tests. Then, an algorithmic trading platform is implemented with the use of five machine learning algorithms. Econometric findings identify potential stationarity, hinting technical evaluation may be possible, though algorithmic trading results find little predictive power in any machine learning model, even when using trend-specific metrics. Accounting for transaction costs and risk, no system achieved above-market returns consistently. Our findings reinforce the validity of weak-form market efficiency.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube