Domain-Agnostic Few-Shot Classification by Learning Disparate Modulators (1909.04999v2)
Abstract: Although few-shot learning research has advanced rapidly with the help of meta-learning, its practical usefulness is still limited because most of them assumed that all meta-training and meta-testing examples came from a single domain. We propose a simple but effective way for few-shot classification in which a task distribution spans multiple domains including ones never seen during meta-training. The key idea is to build a pool of models to cover this wide task distribution and learn to select the best one for a particular task through cross-domain meta-learning. All models in the pool share a base network while each model has a separate modulator to refine the base network in its own way. This framework allows the pool to have representational diversity without losing beneficial domain-invariant features. We verify the effectiveness of the proposed algorithm through experiments on various datasets across diverse domains.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.