Papers
Topics
Authors
Recent
2000 character limit reached

Multi-Sensor 3D Object Box Refinement for Autonomous Driving

Published 11 Sep 2019 in cs.CV | (1909.04942v2)

Abstract: We propose a 3D object detection system with multi-sensor refinement in the context of autonomous driving. In our framework, the monocular camera serves as the fundamental sensor for 2D object proposal and initial 3D bounding box prediction. While the stereo cameras and LiDAR are treated as adaptive plug-in sensors to refine the 3D box localization performance. For each observed element in the raw measurement domain (e.g., pixels for stereo, 3D points for LiDAR), we model the local geometry as an instance vector representation, which indicates the 3D coordinate of each element respecting to the object frame. Using this unified geometric representation, the 3D object location can be unified refined by the stereo photometric alignment or point cloud alignment. We demonstrate superior 3D detection and localization performance compared to state-of-the-art monocular, stereo methods and competitive performance compared with the baseline LiDAR method on the KITTI object benchmark.

Citations (12)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.