Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 221 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Automated Spectral Kernel Learning (1909.04894v2)

Published 11 Sep 2019 in cs.LG and stat.ML

Abstract: The generalization performance of kernel methods is largely determined by the kernel, but common kernels are stationary thus input-independent and output-independent, that limits their applications on complicated tasks. In this paper, we propose a powerful and efficient spectral kernel learning framework and learned kernels are dependent on both inputs and outputs, by using non-stationary spectral kernels and flexibly learning the spectral measure from the data. Further, we derive a data-dependent generalization error bound based on Rademacher complexity, which estimates the generalization ability of the learning framework and suggests two regularization terms to improve performance. Extensive experimental results validate the effectiveness of the proposed algorithm and confirm our theoretical results.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.