Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Semi-supervised Vector-valued Learning: Improved Bounds and Algorithms (1909.04883v4)

Published 11 Sep 2019 in cs.LG and stat.ML

Abstract: Vector-valued learning, where the output space admits a vector-valued structure, is an important problem that covers a broad family of important domains, e.g. multi-task learning and transfer learning. Using local Rademacher complexity and unlabeled data, we derive novel semi-supervised excess risk bounds for general vector-valued learning from both kernel perspective and linear perspective. The derived bounds are much sharper than existing ones and the convergence rates are improved from the square root of labeled sample size to the square root of total sample size or directly dependent on labeled sample size. Motivated by our theoretical analysis, we propose a general semi-supervised algorithm for efficiently learning vector-valued functions, incorporating both local Rademacher complexity and Laplacian regularization. Extensive experimental results illustrate the proposed algorithm significantly outperforms the compared methods, which coincides with our theoretical findings.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Jian Li (667 papers)
  2. Yong Liu (724 papers)
  3. Weiping Wang (123 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.