Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Effectiveness of Adversarial Examples and Defenses for Malware Classification (1909.04778v1)

Published 10 Sep 2019 in cs.LG, cs.CR, and stat.ML

Abstract: Artificial neural networks have been successfully used for many different classification tasks including malware detection and distinguishing between malicious and non-malicious programs. Although artificial neural networks perform very well on these tasks, they are also vulnerable to adversarial examples. An adversarial example is a sample that has minor modifications made to it so that the neural network misclassifies it. Many techniques have been proposed, both for crafting adversarial examples and for hardening neural networks against them. Most previous work has been done in the image domain. Some of the attacks have been adopted to work in the malware domain which typically deals with binary feature vectors. In order to better understand the space of adversarial examples in malware classification, we study different approaches of crafting adversarial examples and defense techniques in the malware domain and compare their effectiveness on multiple datasets.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.