Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Multimodal Embeddings from Language Models (1909.04302v1)

Published 10 Sep 2019 in cs.CL and cs.LG

Abstract: Word embeddings such as ELMo have recently been shown to model word semantics with greater efficacy through contextualized learning on large-scale language corpora, resulting in significant improvement in state of the art across many natural language tasks. In this work we integrate acoustic information into contextualized lexical embeddings through the addition of multimodal inputs to a pretrained bidirectional LLM. The LLM is trained on spoken language that includes text and audio modalities. The resulting representations from this model are multimodal and contain paralinguistic information which can modify word meanings and provide affective information. We show that these multimodal embeddings can be used to improve over previous state of the art multimodal models in emotion recognition on the CMU-MOSEI dataset.

Citations (11)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.