NISER: Normalized Item and Session Representations to Handle Popularity Bias (1909.04276v4)
Abstract: The goal of session-based recommendation (SR) models is to utilize the information from past actions (e.g. item/product clicks) in a session to recommend items that a user is likely to click next. Recently it has been shown that the sequence of item interactions in a session can be modeled as graph-structured data to better account for complex item transitions. Graph neural networks (GNNs) can learn useful representations for such session-graphs, and have been shown to improve over sequential models such as recurrent neural networks [14]. However, we note that these GNN-based recommendation models suffer from popularity bias: the models are biased towards recommending popular items, and fail to recommend relevant long-tail items (less popular or less frequent items). Therefore, these models perform poorly for the less popular new items arriving daily in a practical online setting. We demonstrate that this issue is, in part, related to the magnitude or norm of the learned item and session-graph representations (embedding vectors). We propose a training procedure that mitigates this issue by using normalized representations. The models using normalized item and session-graph representations perform significantly better: i. for the less popular long-tail items in the offline setting, and ii. for the less popular newly introduced items in the online setting. Furthermore, our approach significantly improves upon existing state-of-the-art on three benchmark datasets.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.