Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Non-Bayesian Social Learning with Uncertain Models over Time-Varying Directed Graphs (1909.04255v1)

Published 10 Sep 2019 in math.OC, cs.MA, and cs.SI

Abstract: We study the problem of non-Bayesian social learning with uncertain models, in which a network of agents seek to cooperatively identify the state of the world based on a sequence of observed signals. In contrast with the existing literature, we focus our attention on the scenario where the statistical models held by the agents about possible states of the world are built from finite observations. We show that existing non-Bayesian social learning approaches may select a wrong hypothesis with non-zero probability under these conditions. Therefore, we propose a new algorithm to iteratively construct a set of beliefs that indicate whether a certain hypothesis is supported by the empirical evidence. This new algorithm can be implemented over time-varying directed graphs, with non{-}doubly stochastic weights.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.