Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Quantum Unsupervised and Supervised Learning on Superconducting Processors (1909.04226v2)

Published 10 Sep 2019 in quant-ph and cs.LG

Abstract: Machine learning algorithms perform well on identifying patterns in many different datasets due to their versatility. However, as one increases the size of the dataset, the computation time for training and using these statistical models grows quickly. Quantum computing offers a new paradigm which may have the ability to overcome these computational difficulties. Here, we propose a quantum analogue to K-means clustering, implement it on simulated superconducting qubits, and compare it to a previously developed quantum support vector machine. We find the algorithm's accuracy comparable to the classical K-means algorithm for clustering and classification problems, and find that it has asymptotic complexity $O(N{3/2}K{1/2}\log{P})$, where $N$ is the number of data points, $K$ is the number of clusters, and $P$ is the dimension of the data points, giving a significant speedup over the classical analogue.

Citations (22)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.