Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Fast IMEX Time Integration of Nonlinear Stiff Fractional Differential Equations (1909.04132v1)

Published 9 Sep 2019 in math.NA and cs.NA

Abstract: Efficient long-time integration of nonlinear fractional differential equations is significantly challenging due to the integro-differential nature of the fractional operators. In addition, the inherent non-smoothness introduced by the inverse power-law kernels deteriorates the accuracy and efficiency of many existing numerical methods. We develop two efficient first- and second-order implicit-explicit (IMEX) methods for accurate time-integration of stiff/nonlinear fractional differential equations with fractional order $\alpha \in (0,1]$ and prove their convergence and linear stability properties. The developed methods are based on a linear multi-step fractional Adams-Moulton method (FAMM), followed by the extrapolation of the nonlinear force terms. In order to handle the singularities nearby the initial time, we employ Lubich-like corrections to the resulting fractional operators. The obtained linear stability regions of the developed IMEX methods are larger than existing IMEX methods in the literature. Furthermore, the size of the stability regions increase with the decrease of fractional order values, which is suitable for stiff problems. We also rewrite the resulting IMEX methods in the language of nonlinear Toeplitz systems, where we employ a fast inversion scheme to achieve a computational complexity of $\mathcal{O}(N \log N)$, where $N$ denotes the number of time-steps. Our computational results demonstrate that the developed schemes can achieve global first- and second-order accuracy for highly-oscillatory stiff/nonlinear problems with singularities.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.