Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Understanding the Effects of Pre-Training for Object Detectors via Eigenspectrum (1909.04021v1)

Published 9 Sep 2019 in cs.CV, cs.LG, and stat.ML

Abstract: ImageNet pre-training has been regarded as essential for training accurate object detectors for a long time. Recently, it has been shown that object detectors trained from randomly initialized weights can be on par with those fine-tuned from ImageNet pre-trained models. However, the effects of pre-training and the differences caused by pre-training are still not fully understood. In this paper, we analyze the eigenspectrum dynamics of the covariance matrix of each feature map in object detectors. Based on our analysis on ResNet-50, Faster R-CNN with FPN, and Mask R-CNN, we show that object detectors trained from ImageNet pre-trained models and those trained from scratch behave differently from each other even if both object detectors have similar accuracy. Furthermore, we propose a method for automatically determining the widths (the numbers of channels) of object detectors based on the eigenspectrum. We train Faster R-CNN with FPN from randomly initialized weights, and show that our method can reduce ~27% of the parameters of ResNet-50 without increasing Multiply-Accumulate operations and losing accuracy. Our results indicate that we should develop more appropriate methods for transferring knowledge from image classification to object detection (or other tasks).

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Yosuke Shinya (5 papers)
  2. Edgar Simo-Serra (25 papers)
  3. Taiji Suzuki (119 papers)
Citations (12)

Summary

We haven't generated a summary for this paper yet.