Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Partner Approximating Learners (PAL): Simulation-Accelerated Learning with Explicit Partner Modeling in Multi-Agent Domains (1909.03868v3)

Published 9 Sep 2019 in eess.SY, cs.AI, cs.LG, cs.MA, and cs.SY

Abstract: Mixed cooperative-competitive control scenarios such as human-machine interaction with individual goals of the interacting partners are very challenging for reinforcement learning agents. In order to contribute towards intuitive human-machine collaboration, we focus on problems in the continuous state and control domain where no explicit communication is considered and the agents do not know the others' goals or control laws but only sense their control inputs retrospectively. Our proposed framework combines a learned partner model based on online data with a reinforcement learning agent that is trained in a simulated environment including the partner model. Thus, we overcome drawbacks of independent learners and, in addition, benefit from a reduced amount of real world data required for reinforcement learning which is vital in the human-machine context. We finally analyze an example that demonstrates the merits of our proposed framework which learns fast due to the simulated environment and adapts to the continuously changing partner due to the partner approximation.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.