Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

MRSNet: Metabolite Quantification from Edited Magnetic Resonance Spectra With Convolutional Neural Networks (1909.03836v1)

Published 6 Sep 2019 in eess.IV, eess.SP, and physics.med-ph

Abstract: Quantification of metabolites from magnetic resonance spectra (MRS) has many applications in medicine and psychology, but remains a challenging task despite considerable research efforts. For example, the neurotransmitter $\gamma$-aminobutyric acid (GABA), present in very low concentration in vivo, regulates inhibitory neurotransmission in the brain and is involved in several processes outside the brain. Reliable quantification is required to determine its role in various physiological and pathological conditions. We present a novel approach to quantification of metabolites from MRS with convolutional neural networks --- MRSNet. MRSNet is trained to perform the multi-class regression problem of identifying relative metabolite concentrations from given input spectra, focusing specifically on the quantification of GABA, which is particularly difficult to resolve. Typically it can only be detected at all using special editing acquisition sequences such as MEGA-PRESS. A large range of network structures, data representations and automatic processing methods are investigated. Results are benchmarked using experimental datasets from test objects of known composition and compared to state-of-the-art quantification methods: LCModel, jMRUI (AQUES, QUEST), TARQUIN, VeSPA and Gannet. The results show that the overall accuracy and precision of metabolite quantification is improved using convolutional neural networks.

Citations (10)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.