Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Efficient Automatic Meta Optimization Search for Few-Shot Learning (1909.03817v1)

Published 6 Sep 2019 in cs.LG, cs.CV, and cs.NE

Abstract: Previous works on meta-learning either relied on elaborately hand-designed network structures or adopted specialized learning rules to a particular domain. We propose a universal framework to optimize the meta-learning process automatically by adopting neural architecture search technique (NAS). NAS automatically generates and evaluates meta-learner's architecture for few-shot learning problems, while the meta-learner uses meta-learning algorithm to optimize its parameters based on the distribution of learning tasks. Parameter sharing and experience replay are adopted to accelerate the architectures searching process, so it takes only 1-2 GPU days to find good architectures. Extensive experiments on Mini-ImageNet and Omniglot show that our algorithm excels in few-shot learning tasks. The best architecture found on Mini-ImageNet achieves competitive results when transferred to Omniglot, which shows the high transferability of architectures among different computer vision problems.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.