Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Efficient Automatic Meta Optimization Search for Few-Shot Learning (1909.03817v1)

Published 6 Sep 2019 in cs.LG, cs.CV, and cs.NE

Abstract: Previous works on meta-learning either relied on elaborately hand-designed network structures or adopted specialized learning rules to a particular domain. We propose a universal framework to optimize the meta-learning process automatically by adopting neural architecture search technique (NAS). NAS automatically generates and evaluates meta-learner's architecture for few-shot learning problems, while the meta-learner uses meta-learning algorithm to optimize its parameters based on the distribution of learning tasks. Parameter sharing and experience replay are adopted to accelerate the architectures searching process, so it takes only 1-2 GPU days to find good architectures. Extensive experiments on Mini-ImageNet and Omniglot show that our algorithm excels in few-shot learning tasks. The best architecture found on Mini-ImageNet achieves competitive results when transferred to Omniglot, which shows the high transferability of architectures among different computer vision problems.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.