Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Impulse Response Data Augmentation and Deep Neural Networks for Blind Room Acoustic Parameter Estimation (1909.03642v2)

Published 9 Sep 2019 in cs.SD and eess.AS

Abstract: The reverberation time (T60) and the direct-to-reverberant ratio (DRR) are commonly used to characterize room acoustic environments. Both parameters can be measured from an acoustic impulse response (AIR) or using blind estimation methods that perform estimation directly from speech. When neural networks are used for blind estimation, however, a large realistic dataset is needed, which is expensive and time consuming to collect. To address this, we propose an AIR augmentation method that can parametrically control the T60 and DRR, allowing us to expand a small dataset of real AIRs into a balanced dataset orders of magnitude larger. Using this method, we train a previously proposed convolutional neural network (CNN) and show we can outperform past single-channel state-of-the-art methods. We then propose a more efficient, straightforward baseline CNN that is 4-5x faster, which provides an additional improvement and is better or comparable to all previously reported single- and multi-channel state-of-the-art methods.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.