Unsupervised Paraphrasing by Simulated Annealing (1909.03588v2)
Abstract: Unsupervised paraphrase generation is a promising and important research topic in natural language processing. We propose UPSA, a novel approach that accomplishes Unsupervised Paraphrasing by Simulated Annealing. We model paraphrase generation as an optimization problem and propose a sophisticated objective function, involving semantic similarity, expression diversity, and language fluency of paraphrases. Then, UPSA searches the sentence space towards this objective by performing a sequence of local editing. Our method is unsupervised and does not require parallel corpora for training, so it could be easily applied to different domains. We evaluate our approach on a variety of benchmark datasets, namely, Quora, Wikianswers, MSCOCO, and Twitter. Extensive results show that UPSA achieves the state-of-the-art performance compared with previous unsupervised methods in terms of both automatic and human evaluations. Further, our approach outperforms most existing domain-adapted supervised models, showing the generalizability of UPSA.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.