Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Curve Fitting from Probabilistic Emissions and Applications to Dynamic Item Response Theory (1909.03586v1)

Published 9 Sep 2019 in stat.ML and cs.LG

Abstract: Item response theory (IRT) models are widely used in psychometrics and educational measurement, being deployed in many high stakes tests such as the GRE aptitude test. IRT has largely focused on estimation of a single latent trait (e.g. ability) that remains static through the collection of item responses. However, in contemporary settings where item responses are being continuously collected, such as Massive Open Online Courses (MOOCs), interest will naturally be on the dynamics of ability, thus complicating usage of traditional IRT models. We propose DynAEsti, an augmentation of the traditional IRT Expectation Maximization algorithm that allows ability to be a continuously varying curve over time. In the process, we develop CurvFiFE, a novel non-parametric continuous-time technique that handles the curve-fitting/regression problem extended to address more general probabilistic emissions (as opposed to simply noisy data points). Furthermore, to accomplish this, we develop a novel technique called grafting, which can successfully approximate distributions represented by graphical models when other popular techniques like Loopy Belief Propogation (LBP) and Variational Inference (VI) fail. The performance of DynAEsti is evaluated through simulation, where we achieve results comparable to the optimal of what is observed in the static ability scenario. Finally, DynAEsti is applied to a longitudinal performance dataset (80-years of competitive golf at the 18-hole Masters Tournament) to demonstrate its ability to recover key properties of human performance and the heterogeneous characteristics of the different holes. Python code for CurvFiFE and DynAEsti is publicly available at github.com/chausies/DynAEstiAndCurvFiFE. This is the full version of our ICDM 2019 paper.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.