Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Episode-based Prototype Generating Network for Zero-Shot Learning (1909.03360v2)

Published 8 Sep 2019 in cs.CV

Abstract: We introduce a simple yet effective episode-based training framework for zero-shot learning (ZSL), where the learning system requires to recognize unseen classes given only the corresponding class semantics. During training, the model is trained within a collection of episodes, each of which is designed to simulate a zero-shot classification task. Through training multiple episodes, the model progressively accumulates ensemble experiences on predicting the mimetic unseen classes, which will generalize well on the real unseen classes. Based on this training framework, we propose a novel generative model that synthesizes visual prototypes conditioned on the class semantic prototypes. The proposed model aligns the visual-semantic interactions by formulating both the visual prototype generation and the class semantic inference into an adversarial framework paired with a parameter-economic Multi-modal Cross-Entropy Loss to capture the discriminative information. Extensive experiments on four datasets under both traditional ZSL and generalized ZSL tasks show that our model outperforms the state-of-the-art approaches by large margins.

Citations (140)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube