Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 28 tok/s Pro
2000 character limit reached

Deep Reinforcement Learning for Control of Probabilistic Boolean Networks (1909.03331v5)

Published 7 Sep 2019 in cs.LG, cs.AI, cs.SY, and eess.SY

Abstract: Probabilistic Boolean Networks (PBNs) were introduced as a computational model for the study of complex dynamical systems, such as Gene Regulatory Networks (GRNs). Controllability in this context is the process of making strategic interventions to the state of a network in order to drive it towards some other state that exhibits favourable biological properties. In this paper we study the ability of a Double Deep Q-Network with Prioritized Experience Replay in learning control strategies within a finite number of time steps that drive a PBN towards a target state, typically an attractor. The control method is model-free and does not require knowledge of the network's underlying dynamics, making it suitable for applications where inference of such dynamics is intractable. We present extensive experiment results on two synthetic PBNs and the PBN model constructed directly from gene-expression data of a study on metastatic-melanoma.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.