Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Subcell flux limiting for high-order Bernstein finite element discretizations of scalar hyperbolic conservation laws (1909.03328v2)

Published 7 Sep 2019 in math.NA and cs.NA

Abstract: This work extends the concepts of algebraic flux correction and convex limiting to continuous high-order Bernstein finite element discretizations of scalar hyperbolic problems. Using an array of adjustable diffusive fluxes, the standard Galerkin approximation is transformed into a nonlinear high-resolution scheme which has the compact sparsity pattern of the piecewise-linear or multilinear subcell discretization. The representation of this scheme in terms of invariant domain preserving states makes it possible to prove the validity of local discrete maximum principles under CFL-like conditions. In contrast to predictor-corrector approaches based on the flux-corrected transport methodology, the proposed flux limiting strategy is monolithic; i.e., limited antidiffusive terms are incorporated into the well-defined residual of a nonlinear (semi-)discrete problem. A stabilized high-order Galerkin discretization is recovered if no limiting is performed. In the limited version, the compact stencil property prevents direct mass exchange between nodes that are not nearest neighbors. A formal proof of sparsity is provided for simplicial and box elements. The involved element contributions can be calculated efficiently making use of matrix-free algorithms and precomputed element matrices of the reference element. Numerical studies for $\mathbb{Q}_2$ discretizations of linear and nonlinear two-dimensional test problems illustrate the virtues of monolithic convex limiting based on subcell flux decompositions.

Citations (21)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.