Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

A Non-Negative Factorization approach to node pooling in Graph Convolutional Neural Networks (1909.03287v1)

Published 7 Sep 2019 in cs.LG, cs.AI, cs.NE, and stat.ML

Abstract: The paper discusses a pooling mechanism to induce subsampling in graph structured data and introduces it as a component of a graph convolutional neural network. The pooling mechanism builds on the Non-Negative Matrix Factorization (NMF) of a matrix representing node adjacency and node similarity as adaptively obtained through the vertices embedding learned by the model. Such mechanism is applied to obtain an incrementally coarser graph where nodes are adaptively pooled into communities based on the outcomes of the non-negative factorization. The empirical analysis on graph classification benchmarks shows how such coarsening process yields significant improvements in the predictive performance of the model with respect to its non-pooled counterpart.

Citations (25)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube