Papers
Topics
Authors
Recent
2000 character limit reached

Recognition Of Surface Defects On Steel Sheet Using Transfer Learning (1909.03258v2)

Published 7 Sep 2019 in cs.CV

Abstract: Automatic defect recognition is one of the research hotspots in steel production, but most of the current methods mainly extract features manually and use machine learning classifiers to recognize defects, which cannot tackle the situation, where there are few data available to train and confine to a certain scene. Therefore, in this paper, a new approach is proposed which consists of part of pretrained VGG16 as a feature extractor and a new CNN neural network as a classifier to recognize the defect of steel strip surface based on the feature maps created by the feature extractor. Our method achieves an accuracy of 99.1% and 96.0% while the dataset contains 150 images each class and 10 images each class respectively, which is much better than previous methods.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.