Papers
Topics
Authors
Recent
2000 character limit reached

Attending the Emotions to Detect Online Abusive Language (1909.03100v1)

Published 6 Sep 2019 in cs.CL

Abstract: In recent years, abusive behavior has become a serious issue in online social networks. In this paper, we present a new corpus from a semi-anonymous social media platform, which contains the instances of offensive and neutral classes. We introduce a single deep neural architecture that considers both local and sequential information from the text in order to detect abusive language. Along with this model, we introduce a new attention mechanism called emotion-aware attention. This mechanism utilizes the emotions behind the text to find the most important words within that text. We experiment with this model on our dataset and later present the analysis. Additionally, we evaluate our proposed method on different corpora and show new state-of-the-art results with respect to offensive language detection.

Citations (22)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.