Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 138 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Receptive-field-regularized CNN variants for acoustic scene classification (1909.02859v1)

Published 5 Sep 2019 in eess.AS, cs.LG, cs.SD, and stat.ML

Abstract: Acoustic scene classification and related tasks have been dominated by Convolutional Neural Networks (CNNs). Top-performing CNNs use mainly audio spectograms as input and borrow their architectural design primarily from computer vision. A recent study has shown that restricting the receptive field (RF) of CNNs in appropriate ways is crucial for their performance, robustness and generalization in audio tasks. One side effect of restricting the RF of CNNs is that more frequency information is lost. In this paper, we perform a systematic investigation of different RF configuration for various CNN architectures on the DCASE 2019 Task 1.A dataset. Second, we introduce Frequency Aware CNNs to compensate for the lack of frequency information caused by the restricted RF, and experimentally determine if and in what RF ranges they yield additional improvement. The result of these investigations are several well-performing submissions to different tasks in the DCASE 2019 Challenge.

Citations (27)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.