Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Effective Search of Logical Forms for Weakly Supervised Knowledge-Based Question Answering (1909.02762v1)

Published 6 Sep 2019 in cs.CL

Abstract: Many algorithms for Knowledge-Based Question Answering (KBQA) depend on semantic parsing, which translates a question to its logical form. When only weak supervision is provided, it is usually necessary to search valid logical forms for model training. However, a complex question typically involves a huge search space, which creates two main problems: 1) the solutions limited by computation time and memory usually reduce the success rate of the search, and 2) spurious logical forms in the search results degrade the quality of training data. These two problems lead to a poorly-trained semantic parsing model. In this work, we propose an effective search method for weakly supervised KBQA based on operator prediction for questions. With search space constrained by predicted operators, sufficient search paths can be explored, more valid logical forms can be derived, and operators possibly causing spurious logical forms can be avoided. As a result, a larger proportion of questions in a weakly supervised training set are equipped with logical forms, and fewer spurious logical forms are generated. Such high-quality training data directly contributes to a better semantic parsing model. Experimental results on one of the largest KBQA datasets (i.e., CSQA) verify the effectiveness of our approach: improving the precision from 67% to 72% and the recall from 67% to 72% in terms of the overall score.

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.