Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 159 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

NEAR: Neighborhood Edge AggregatoR for Graph Classification (1909.02746v2)

Published 6 Sep 2019 in cs.LG and stat.ML

Abstract: Learning graph-structured data with graph neural networks (GNNs) has been recently emerging as an important field because of its wide applicability in bioinformatics, chemoinformatics, social network analysis and data mining. Recent GNN algorithms are based on neural message passing, which enables GNNs to integrate local structures and node features recursively. However, past GNN algorithms based on 1-hop neighborhood neural message passing are exposed to a risk of loss of information on local structures and relationships. In this paper, we propose Neighborhood Edge AggregatoR (NEAR), a framework that aggregates relations between the nodes in the neighborhood via edges. NEAR, which can be orthogonally combined with Graph Isomorphism Network (GIN), gives integrated information that describes which nodes in the neighborhood are connected. Therefore, NEAR can reflect additional information of a local structure of each node beyond the nodes themselves in 1-hop neighborhood. Experimental results on multiple graph classification tasks show that our algorithm makes a good improvement over other existing 1-hop based GNN-based algorithms.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube