Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

iFDK: A Scalable Framework for Instant High-resolution Image Reconstruction (1909.02724v1)

Published 6 Sep 2019 in cs.DC

Abstract: Computed Tomography (CT) is a widely used technology that requires compute-intense algorithms for image reconstruction. We propose a novel back-projection algorithm that reduces the projection computation cost to 1/6 of the standard algorithm. We also propose an efficient implementation that takes advantage of the heterogeneity of GPU-accelerated systems by overlapping the filtering and back-projection stages on CPUs and GPUs, respectively. Finally, we propose a distributed framework for high-resolution image reconstruction on state-of-the-art GPU-accelerated supercomputers. The framework relies on an elaborate interleave of MPI collective communication steps to achieve scalable communication. Evaluation on a single Tesla V100 GPU demonstrates that our back-projection kernel performs up to 1.6x faster than the standard FDK implementation. We also demonstrate the scalability and instantaneous CT capability of the distributed framework by using up to 2,048 V100 GPUs to solve 4K and 8K problems within 30 seconds and 2 minutes, respectively (including I/O).

Citations (12)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.