Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 166 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Contextual Minimum-Norm Estimates (CMNE): A Deep Learning Method for Source Estimation in Neuronal Networks (1909.02636v1)

Published 5 Sep 2019 in q-bio.QM, cs.LG, and stat.ML

Abstract: Magnetoencephalography (MEG) and Electroencephalography (EEG) source estimates have thus far mostly been derived sample by sample, i.e., independent of each other in time. However, neuronal assemblies are heavily interconnected, constraining the temporal evolution of neural activity in space as detected by MEG and EEG. The observed neural currents are thus highly context dependent. Here, a new method is presented which integrates predictive deep learning networks with the Minimum-Norm Estimates (MNE) approach. Specifically, we employ Long Short-Term Memory (LSTM) networks, a type of recurrent neural network, for predicting brain activity. Because we use past activity (context) in the estimation, we call our method Contextual MNE (CMNE). We demonstrate that these contextual algorithms can be used for predicting activity based on previous brain states and when used in conjunction with MNE, they lead to more accurate source estimation. To evaluate the performance of CMNE, it was tested on simulated and experimental data from human auditory evoked response experiments.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube