Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Are Adversarial Robustness and Common Perturbation Robustness Independent Attributes ? (1909.02436v2)

Published 4 Sep 2019 in cs.LG, cs.CV, and stat.ML

Abstract: Neural Networks have been shown to be sensitive to common perturbations such as blur, Gaussian noise, rotations, etc. They are also vulnerable to some artificial malicious corruptions called adversarial examples. The adversarial examples study has recently become very popular and it sometimes even reduces the term "adversarial robustness" to the term "robustness". Yet, we do not know to what extent the adversarial robustness is related to the global robustness. Similarly, we do not know if a robustness to various common perturbations such as translations or contrast losses for instance, could help with adversarial corruptions. We intend to study the links between the robustnesses of neural networks to both perturbations. With our experiments, we provide one of the first benchmark designed to estimate the robustness of neural networks to common perturbations. We show that increasing the robustness to carefully selected common perturbations, can make neural networks more robust to unseen common perturbations. We also prove that adversarial robustness and robustness to common perturbations are independent. Our results make us believe that neural network robustness should be addressed in a broader sense.

Citations (40)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.