Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

POD: Practical Object Detection with Scale-Sensitive Network (1909.02225v1)

Published 5 Sep 2019 in cs.CV

Abstract: Scale-sensitive object detection remains a challenging task, where most of the existing methods could not learn it explicitly and are not robust to scale variance. In addition, the most existing methods are less efficient during training or slow during inference, which are not friendly to real-time applications. In this paper, we propose a practical object detection method with scale-sensitive network.Our method first predicts a global continuous scale ,which is shared by all position, for each convolution filter of each network stage. To effectively learn the scale, we average the spatial features and distill the scale from channels. For fast-deployment, we propose a scale decomposition method that transfers the robust fractional scale into combination of fixed integral scales for each convolution filter, which exploits the dilated convolution. We demonstrate it on one-stage and two-stage algorithms under different configurations. For practical applications, training of our method is of efficiency and simplicity which gets rid of complex data sampling or optimize strategy. During test-ing, the proposed method requires no extra operation and is very supportive of hardware acceleration like TensorRT and TVM. On the COCO test-dev, our model could achieve a 41.5 mAP on one-stage detector and 42.1 mAP on two-stage detectors based on ResNet-101, outperforming base-lines by 2.4 and 2.1 respectively without extra FLOPS.

Citations (21)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.