Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

On Least Squares Estimation under Heteroscedastic and Heavy-Tailed Errors (1909.02088v3)

Published 4 Sep 2019 in math.ST, cs.LG, stat.ML, and stat.TH

Abstract: We consider least squares estimation in a general nonparametric regression model. The rate of convergence of the least squares estimator (LSE) for the unknown regression function is well studied when the errors are sub-Gaussian. We find upper bounds on the rates of convergence of the LSE when the errors have uniformly bounded conditional variance and have only finitely many moments. We show that the interplay between the moment assumptions on the error, the metric entropy of the class of functions involved, and the "local" structure of the function class around the truth drives the rate of convergence of the LSE. We find sufficient conditions on the errors under which the rate of the LSE matches the rate of the LSE under sub-Gaussian error. Our results are finite sample and allow for heteroscedastic and heavy-tailed errors.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.