Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Learning a Spatial Field in Minimum Time with a Team of Robots (1909.01895v2)

Published 4 Sep 2019 in cs.RO

Abstract: We study an informative path-planning problem where the goal is to minimize the time required to learn a spatially varying entity. We use Gaussian Process (GP) regression for learning the underlying field. Our goal is to ensure that the GP posterior variance, which is also the mean square error between the learned and actual fields, is below a predefined value. We study three versions of the problem. In the placement version, the objective is to minimize the number of measurement locations while ensuring that the posterior variance is below a predefined threshold. In the mobile robot version, we seek to minimize the total time required to visit and collect measurements from the measurement locations using a single robot. We also study a multi-robot version where the objective is to minimize the time required by the last robot to return to a common starting location called depot. By exploiting the properties of GP regression, we present constant-factor approximation algorithms. In addition to the theoretical results, we also compare the empirical performance using a real-world dataset, with other baseline strategies.

Citations (21)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.