Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Rethinking the Number of Channels for the Convolutional Neural Network (1909.01861v1)

Published 4 Sep 2019 in cs.CV

Abstract: Latest algorithms for automatic neural architecture search perform remarkable but few of them can effectively design the number of channels for convolutional neural networks and consume less computational efforts. In this paper, we propose a method for efficient automatic architecture search which is special to the widths of networks instead of the connections of neural architecture. Our method, functionally incremental search based on function-preserving, will explore the number of channels rapidly while controlling the number of parameters of the target network. On CIFAR-10 and CIFAR-100 classification, our method using minimal computational resources (0.4~1.3 GPU-days) can discover more efficient rules of the widths of networks to improve the accuracy by about 0.5% on CIFAR-10 and a~2.33% on CIFAR-100 with fewer number of parameters. In particular, our method is suitable for exploring the number of channels of almost any convolutional neural network rapidly.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.