Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 26 tok/s Pro
2000 character limit reached

Model Asset eXchange: Path to Ubiquitous Deep Learning Deployment (1909.01606v1)

Published 4 Sep 2019 in cs.LG and stat.ML

Abstract: A recent trend observed in traditionally challenging fields such as computer vision and natural language processing has been the significant performance gains shown by deep learning (DL). In many different research fields, DL models have been evolving rapidly and become ubiquitous. Despite researchers' excitement, unfortunately, most software developers are not DL experts and oftentimes have a difficult time following the booming DL research outputs. As a result, it usually takes a significant amount of time for the latest superior DL models to prevail in industry. This issue is further exacerbated by the common use of sundry incompatible DL programming frameworks, such as Tensorflow, PyTorch, Theano, etc. To address this issue, we propose a system, called Model Asset Exchange (MAX), that avails developers of easy access to state-of-the-art DL models. Regardless of the underlying DL programming frameworks, it provides an open source Python library (called the MAX framework) that wraps DL models and unifies programming interfaces with our standardized RESTful APIs. These RESTful APIs enable developers to exploit the wrapped DL models for inference tasks without the need to fully understand different DL programming frameworks. Using MAX, we have wrapped and open-sourced more than 30 state-of-the-art DL models from various research fields, including computer vision, natural language processing and signal processing, etc. In the end, we selectively demonstrate two web applications that are built on top of MAX, as well as the process of adding a DL model to MAX.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.