Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Compositional Model of Multi-faceted Trust for Personalized Item Recommendation (1909.01601v1)

Published 4 Sep 2019 in cs.IR and cs.LG

Abstract: Trust-based recommender systems improve rating prediction with respect to Collaborative Filtering by leveraging the additional information provided by a trust network among users to deal with the cold start problem. However, they are challenged by recent studies according to which people generally perceive the usage of data about social relations as a violation of their own privacy. In order to address this issue, we extend trust-based recommender systems with additional evidence about trust, based on public anonymous information, and we make them configurable with respect to the data that can be used in the given application domain: 1 - We propose the Multi-faceted Trust Model (MTM) to define trust among users in a compositional way, possibly including or excluding the types of information it contains. MTM flexibly integrates social links with public anonymous feedback received by user profiles and user contributions in social networks. 2 - We propose LOCABAL+, based on MTM, which extends the LOCABAL trust-based recommender system with multi-faceted trust and trust-based social regularization. Experiments carried out on two public datasets of item reviews show that, with a minor loss of user coverage, LOCABAL+ outperforms state-of-the art trust-based recommender systems and Collaborative Filtering in accuracy, ranking of items and error minimization both when it uses complete information about trust and when it ignores social relations. The combination of MTM with LOCABAL+ thus represents a promising alternative to state-of-the-art trust-based recommender systems.

Citations (25)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.