Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

AMR Normalization for Fairer Evaluation (1909.01568v2)

Published 4 Sep 2019 in cs.CL

Abstract: Meaning Representation (AMR; Banarescu et al., 2013) encodes the meaning of sentences as a directed graph and Smatch (Cai and Knight, 2013) is the primary metric for evaluating AMR graphs. Smatch, however, is unaware of some meaning-equivalent variations in graph structure allowed by the AMR Specification and gives different scores for AMRs exhibiting these variations. In this paper I propose four normalization methods for helping to ensure that conceptually equivalent AMRs are evaluated as equivalent. Equivalent AMRs with and without normalization can look quite different---comparing a gold corpus to itself with relation reification alone yields a difference of 25 Smatch points, suggesting that the outputs of two systems may not be directly comparable without normalization. The algorithms described in this paper are implemented on top of an existing open-source Python toolkit for AMR and will be released under the same license.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Github Logo Streamline Icon: https://streamlinehq.com