Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Simpler and Faster Learning of Adaptive Policies for Simultaneous Translation (1909.01559v2)

Published 4 Sep 2019 in cs.CL

Abstract: Simultaneous translation is widely useful but remains challenging. Previous work falls into two main categories: (a) fixed-latency policies such as Ma et al. (2019) and (b) adaptive policies such as Gu et al. (2017). The former are simple and effective, but have to aggressively predict future content due to diverging source-target word order; the latter do not anticipate, but suffer from unstable and inefficient training. To combine the merits of both approaches, we propose a simple supervised-learning framework to learn an adaptive policy from oracle READ/WRITE sequences generated from parallel text. At each step, such an oracle sequence chooses to WRITE the next target word if the available source sentence context provides enough information to do so, otherwise READ the next source word. Experiments on German<->English show that our method, without retraining the underlying NMT model, can learn flexible policies with better BLEU scores and similar latencies compared to previous work.

Citations (76)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.