Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

A Novel Loss Function Incorporating Imaging Acquisition Physics for PET Attenuation Map Generation using Deep Learning (1909.01394v1)

Published 3 Sep 2019 in eess.IV, cs.CV, cs.LG, and physics.med-ph

Abstract: In PET/CT imaging, CT is used for PET attenuation correction (AC). Mismatch between CT and PET due to patient body motion results in AC artifacts. In addition, artifact caused by metal, beam-hardening and count-starving in CT itself also introduces inaccurate AC for PET. Maximum likelihood reconstruction of activity and attenuation (MLAA) was proposed to solve those issues by simultaneously reconstructing tracer activity ($\lambda$-MLAA) and attenuation map ($\mu$-MLAA) based on the PET raw data only. However, $\mu$-MLAA suffers from high noise and $\lambda$-MLAA suffers from large bias as compared to the reconstruction using the CT-based attenuation map ($\mu$-CT). Recently, a convolutional neural network (CNN) was applied to predict the CT attenuation map ($\mu$-CNN) from $\lambda$-MLAA and $\mu$-MLAA, in which an image-domain loss (IM-loss) function between the $\mu$-CNN and the ground truth $\mu$-CT was used. However, IM-loss does not directly measure the AC errors according to the PET attenuation physics, where the line-integral projection of the attenuation map ($\mu$) along the path of the two annihilation events, instead of the $\mu$ itself, is used for AC. Therefore, a network trained with the IM-loss may yield suboptimal performance in the $\mu$ generation. Here, we propose a novel line-integral projection loss (LIP-loss) function that incorporates the PET attenuation physics for $\mu$ generation. Eighty training and twenty testing datasets of whole-body 18F-FDG PET and paired ground truth $\mu$-CT were used. Quantitative evaluations showed that the model trained with the additional LIP-loss was able to significantly outperform the model trained solely based on the IM-loss function.

Citations (29)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.