Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Few-Shot Generalization for Single-Image 3D Reconstruction via Priors (1909.01205v1)

Published 3 Sep 2019 in cs.CV, cs.LG, and stat.ML

Abstract: Recent work on single-view 3D reconstruction shows impressive results, but has been restricted to a few fixed categories where extensive training data is available. The problem of generalizing these models to new classes with limited training data is largely open. To address this problem, we present a new model architecture that reframes single-view 3D reconstruction as learnt, category agnostic refinement of a provided, category-specific prior. The provided prior shape for a novel class can be obtained from as few as one 3D shape from this class. Our model can start reconstructing objects from the novel class using this prior without seeing any training image for this class and without any retraining. Our model outperforms category-agnostic baselines and remains competitive with more sophisticated baselines that finetune on the novel categories. Additionally, our network is capable of improving the reconstruction given multiple views despite not being trained on task of multi-view reconstruction.

Citations (34)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.