Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Attention-based Pairwise Multi-Perspective Convolutional Neural Network for Answer Selection in Question Answering (1909.01059v3)

Published 3 Sep 2019 in cs.CL

Abstract: Over the past few years, question answering and information retrieval systems have become widely used. These systems attempt to find the answer of the asked questions from raw text sources. A component of these systems is Answer Selection which selects the most relevant from candidate answers. Syntactic similarities were mostly used to compute the similarity, but in recent works, deep neural networks have been used, making a significant improvement in this field. In this research, a model is proposed to select the most relevant answers to the factoid question from the candidate answers. The proposed model ranks the candidate answers in terms of semantic and syntactic similarity to the question, using convolutional neural networks. In this research, Attention mechanism and Sparse feature vector use the context-sensitive interactions between questions and answer sentence. Wide convolution increases the importance of the interrogative word. Pairwise ranking is used to learn differentiable representations to distinguish positive and negative answers. Our model indicates strong performance on the TrecQA Raw beating previous state-of-the-art systems by 1.4% in MAP and 1.1% in MRR while using the benefits of no additional syntactic parsers and external tools. The results show that using context-sensitive interactions between question and answer sentences can help to find the correct answer more accurately.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.